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Quantum energy spectrum from the integral Schridinger
equation

Yochai Ben-Horin and M S Marinov
Department of Physics, Technion-Tsrael Institute of Technology, Haifa 32000, Isracl

Received 18 May 1993

Abstract, The integral form of the Schrodinger equation for bound-state levels, considered by
Schwinger, is used for evaluation of the energy spectrum. The method is based upon calculation
of the series for powers of eigenvalues of the coupling constant, as given by multiple integrals of
products of the potential and free Green functions. Some qualitative properties of the solutions
can be easily proved in a general way. The integrals are appropriate, in particular, for calculation
by means of the Monte Carlo method. The semiclassical approximation is derived for the one-
dimensional case. A number of examples show the effectiveness of the method.

1. Introducton

We shall consider the quantum mechanical bound-state problem for a ﬁmte—range potential
well. The Hamiltonian is of the form H Hy — AV, where By = —A is the kinetic energy
operator, the potential energy operator Vis given by a (properly normalized) function V(x)
describing the well, and A is a potential strength coefficient (the coupling constant). For a
bound-state wavefunction W, (x), square-integrable in the s-dimensional Euclidean space, the
Schrodinger equation, (H + )W, = 0, can be transformed to an integral form, which is a
homogeneous second-kind Fredholm equation

AT, = GV, 4y
where G, = (Hy + &)™ is the free-motion Green function. It is assumed that the potential is
localized to a finite region in space, i.e. lim V(x) = 0 as |x| — co. For any positive value
of &, the eigenvalues of the integral operator in the RHS of (1) describe a set of self-similar
potentials, having a bound state with the energy £. As is clear from the physical arguments, the
spectrum of the coupling constants, for any given binding energy ¢ > 0, is infinite and bounded
from below by the lowest eigenvalue Ay(¢), corresponding to a minimum coupling constant, at
which the potential has its ground state at . The spectrum of the coupling constants is discrete,
unlike the energy spectrum. (A typical example is shown in figure 1. For any & > 0, there is
2 finite number of bound levels with & > 0, and a continuous spectrum at ¢ < 0. Any fixed
£ > 0 corresponds to an infinite number of the eigenvalues A, (¢), three of which are presented
in the figure.) The value of the ground-state energy &g is one of the most important features of
any quantum mechanical problem, and it is the A-dependence of £p that can be calculated as a
function inverse to Ag(e).

The integral representation of the Schrédinger equation was used by Schwinger [1] in order
to prove a number of general properties of the energy spectrum. The purpose of this work is
to show that (1) can be also used for a numerical calculation of the lower state energies. It is
found that the method is quite practical in some respects, and sometimes has certain advantages
as compared with more traditional methods based upon the differential equation.
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Figure 1. Lower bound levels for patential A/ cosh? x, equation (41}, The broken curves show the
semi-classical approximation.

2. Trace invariants

2.1 Definition

Let us consider a sequence of invariants for the integral operator in (1), which are the traces
of its powers, o i

Sn(e) =Te(G. V)Y =3 a7, A @)

n=0

If N is high enough, the first terms in the series are dominant, and one can get Ag, A1, ...
immediately and with reasonable accuracy, calculating the traces, (A discussion is given in
section 6.)

Under proper assumptions on the form of the potential, the traces exist and the series are
convergent, at least for sufficiently large N. Tn order to evaluate each trace, one has to calculate
a muitiple integral, in coordinate or momentum representation:

SN(E) = f -fdsX] ‘e .d'vaV(xl)GE(M —-JCz)V(JCZ) e V(xN)Gs(xN —xl)

= ff &k .. AN Gk V (b — k)Celh) ... Gl Vhy — k1) (3)

where d°x and d°k are the volume elements in the (s-dimensional) coordinate and momentum
spaces; G and V are the Fourier transforms of G, and V, respectively:

Gelk) = (2 + &)! G:(x) = Cr)™ f d ke®* G (k) 4)

VE) = 27)~* ] dExe *V(x}. (5)
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The integrals can be represented by means of the following recursive procedure, which
resembles that in constructing the perturbative series for the Green function:

dk
@) = [ Kt ki )= : ©
d*k
Ko Gt o ) = f K11,k 6) =V = ko) M
K1k, ko; 8) = Vky —kz) - (8)

Here Ky is the kernel for the Hermitean operator Ky = V(G V)N-L.
Now the problem is to compute the multiple integrals, vet there are some general arguments
to be considered before appealing to numerical methods.

2.2. Symmetries

If the potential has a symmetry, one can reduce the integration appropriately, separating states
having different symmetry properties. Namely, let I' be a space symmetry group preserving
the form of the potential, G;(yx) = Gg(x), V(yx) = V(x), where y € I' is a space
transformation. As is well known {2] the eigenstates are distributed in classes corresponding
to irreducible unitary representations of I'. The Green function can be written as a sum over,
all unitary irreducible group representations,

6. = Z GrB, )

where P is a projection to a given unitary 1rreduc1ble represantatmn acting in the space
of funct:ons on the group orbit in R*, and the partial Green operator G“J acts in the co-set
space M = R’/ T and is obtained by means of an appropriate averaging over the group I". In
the coordinate representation, where V' is diagonal, the decomposition of (9) is appropriate.
A similar decomposition should be applied to the potential operator vV, if one prefers the
momentum representation, where & is diagonal.

Setting the decomposition into (2}, we get,

Swie) =D She) _ (10)
F

where only the levels corresponding to a given unitary group representation p contribute to
the partial trace function S, which is given by a reduced integral,

S2(6) = fM .. fM Q) - du(r)V (D CEGr, 1)V ) . V ) G s 7o)

- fM fm k) .- dulen)Ga () 7P Chr, k) Glln) ... o ) 77 Gy )
(11)

and the integrals are calenlated in the co-set space M with an appropriate measure djt.

Let us consider two simple examples:

(i) Symemetry under reflection: V{x) = V(—x), [ = Z,. and M is a half-space. The group
has 2 irreducible representations, p = =+,

Go(x1 — x2) = GF (x1, x2) + G (1, 32) (12)
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where
GE(x1, x2) = L[Ge(x1 = x2) == Golry + 1)) = £GE (1, —x2) . (13)

Similarly, one can define V*(kl, kp) and set it into {11). The Jevels having even and odd
wavefunctions contribute separately to Sﬁ (g} and Sy ().

(i) Rotational symmetry in R® ; V(z) = V(r), r = |z|, and ' = $O(3). Each unitary
representation is given by an (integer) angular momentum !, and

+1
Gilri,r) = Gz — ®2) Pi(2) dz (14)

where (@1 - ©2) = riraz, and Pi(z) is the Legendre polynomial. The result, given in [3], is a
product of modified Bessel functions of the argument £'/2r. Similarly, one can define V(k;, k2)
and set it into (11). Another way of dealing with the problem with spherical symmetry is to
consider the Schrédinger equation for the radjal wavefunction, with the centrifugal potential
1({ 4- 1)/r? added to AV, where the boundary condition at » = 0 is fixed by using G; instead
of G.. Of course, the method can be extended easily to R* with I" = SC(s).

Using the above arguments to separate levels having different symmetry properties, one
gets series and integrals having a better convergence.

3. Small binding energies

The limit of £ — 0 is of particular interest, since it enables one to get the threshold values of
the coupling constant at which binding takes place. The one- and two-dimensional problems
are special, because they have bound states for any attracting potential, even for a vanishing
coupling [4]. This is evident from (3), since the integral is divergent for ¢ = 0.

(1) One-dimensional probiem. At small & the domain of small & is the reason of the
divergence in the integral, which can be evaluated approximately:

Sx(e) = [V(0) f Gy dk + oY . (15)

The first term in the series (2) is dominant, as it goes to infinity, and one gets the well known
result

P
V8 = E,/ Vix) dx:. (16)

(ii) Two-dimensional problem. The traces have a logarithmic divergence at small k&, but
an argument like that given above cannot be applied immediately, since the integral of G,
would also be diverging at large k. Actually, the integral exists because of a decrease in V' at
some values of k2, large as compared with £, owing to a finite potential range. Introducing the
cut-off phenomenologically, one gets

c A -1
&y = aﬁexp{b[;LV(x)dzx] ] (17}

where D is a compact domain where the potential is essentially non-zero, a(D) is its area,
and C is a A-independent dimensionless constant, which depends on the shape of D. For
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two-dimensional potentials having the central symmetry, this result was given by Landau and
Lifshitz [4], with C = 2.

(iii) Three-dimensional problem. The integral is converging now, and the first bound state
appears at a finite value of the coupling constant Ay. Calculating Sy (0) one can evaluate A
and derive some bounds on the spectrum [1, 5]. It is noteworthy that Ay is not analytical near
€ = 0, as one can see from the integrals. Applying the operator ./zd/de to Sy and setting
g = (0, one has

Zdn/k O+ = —KN(O 0; 0) (18)
a=0 i
and the constants d,, determine the behaviour of the coupling constants rear ¢ = 0, namely

r(g) = A (0)(1 + dpa/?).

4. Higher-excited levels

The semi-classical quantization rule enables one to improve the effectiveness of the method
based upon calculation of the traces. Actnally, evaluating a few lower eigenvalues A, from a
number of Sy, one has to neglect the remainder of the infinite series in (2). On the other hand,
the semi-ciassical approach is adequate just for higher eigenvalunes, ie. for excited energy
levels, so the remainders can be evaluated properly. Setting the semi-classical approximation
for » > 1, one can sum up the infinite series for Sy(g), except for a finite number of the first
terms, where the approximation is not accurate enough.
Let us consider a generating function for the trace invariants,

A ’ .
A AVs —_— 19
gle, h) = Z n(e) = Z{;xn(a) (19)

This function’can be expressed in terms of the Green functicon for the total Hamiltonian,
g(e ) = ATV (& +&)71]. Qo)

As shown in appendix Al, the semi-classical approximation in the one-dimensional case
enables one to get a closed expression for this function (A11) summing up the contributions
to the Green function from the classical trajectories

3
2, 8) = l-%tanw @21

where w(A, &) is given in terms of the action integral (A8).
We shall introduce truncated trace invariants and represent them in terms of contour
integrals of the generating function,

- 8k, €) '
5 = Z AN = @2ri)” f BT (22)
Re=y
The contour C,, in the complex A plane comes from +co above the real axis, crosses the axis
between A,_; and A, and leaves for +oc below the axis. If v is large enough, one can use the
semi-classical approximation in the integral. Changing the variable, L — w, we get

dw{ fQw/7+/2) tanw (23)
C
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where f is defined after {(A12) as a function inverse to v(§}, and the contour crosses the
axis between w(v — 12) and (v + %). Let us deform the contour and make it parallel to the
imaginary axis and cross the axis at w == v, so that in the complex plane w = v <+ iy and
tan w = itanh y. Performing the analytical continuation in w and setting

f (va + 2iy
nA/s

we introduce two real functions, p,(¥) = p,{—y} and ¢,{¥) = —~¢,(—y), which also depend
on £. The result is a rapidly converging real integral,

) = p() e @4

1 [=.+]
SN = popy fo dy[pu(y)JZN sin[2Ne,(y)]tanh y . (25)

As soon as Sy and Sﬁ}” are calculated to a reasonable accuracy, we get a finite set of
equations for lower A,

v—1
Z:A,;N=SN-—SE:) N:LNI,...,Nl'i'U. (26)
r=0 .

If we start from N| =.1, the problem is to solve an order-v algebraic equation with coefficients

obtained from (26). Its roots are Ay 1., k;ll.

5. Yukawa-type potential

The trace invariants can be calculated explicitly for the Yukawa-type potential, i.e.

I

Vi) = ——— - S @7
® = —m (27)
where u is a parameter, the inverse potential range. The comesponding potentials in the

x-Tepresentations are

Vix) = e *Ki fors =1 (28)

e—.ulxl
Vix) =4mp

fors =73. (29
B )
Now the integrals of (3) are like the integrals given by the Feynman diagrams (in the s-
dimensional Euclidean field theory), which are regular polygons with all vertices connected
to the centre:

_ (Y z &k,
s =(8)" [ o5t s G0

(we set ky41 = k). Using the standard method of field theory, and introducing auxitiary
parameters, we can represent the integral in the exponential form:

N N ’
Snle) = (M/TT)N f . ‘f 1—_[ dee, By d¥k, exp [" (Z[ank§+13n(kn+l _kn)2]+953+.3ﬂ*2)]
n=1
(3

n=1
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where & = Z,‘y:loz,,, B = 3N B, and the integration domain is {&, > 0, B, > O}.
Evaluating the Gaussian integrals in k,, one gets the determinant of the Jacobi tridiagonal
matrix depending on the positive parameters v, and 8.

Let us concentrate upon the one-dimensional case. The Schrédinger equation has an
e;xplicit solution in terms of the Bessel functions (see e.g. [6])

W (x) = CJ, (¢ e #H1/2) (32)

where C is a normalization constant, v = 2./£/u, and ¢ = 2+/A/s. The spectrum is given
by the boundary condition at x = 0:

2
forevenlevels:  W(0) =0 kg,,,.g(f-;):%(j;,m)z (33)

2
for odd levels: V(=0 Agm—1(E) = %( jul,,,)?‘ . (34)

Here j,mand j; , (m = 1, 2, .. ) areroots of the Bessel function and its derivative, respectively
(we use Watson’s notation [7]).
Separating the even and odd levels in the trace invariants Sf& (£), one has to set

VERy, ko) = g ([ky — ko) + V1 & [y + ko) + p?T70) (35)

instead of the second factor in integrals (30), restricting the integration region to positive k.
All the integrations can be performed analytically. The lowest trace invariants are given in
appendix A2. The result is in agreement with the known summation formulae for series of
roots of the Bessel functions (cf e.g. [8]).

It is noteworthy that the calculation of Sy (0) was performed in 1781 by Euler (as explained
by Watson [7]), and the result was nsed for evaluation of the smallest zeros of Jy(2).

Concluding this section, we note that any finite-range potential V (x) can be approximated
reasonably with a finite superposition of the Yukawa-type potentials of different ranges w, if
the Padé approximation is used for V (k). In principle, the corresponding trace invariants can
be calculated analytically.

6. Computational resulis and examples

6.1. General arguments

The problem is to evaluate the trace invariants which are given by multiple integrals in (3). The
quantities, which can be obtained analytically for the Yokawa-type potentials in section 5, must
be calculated numerically in general, for instance, by means of the Monte Cario method. A
suitable form of the integral in the one-dlmensmnal caseis obtained by means of the substitation
k = ./etan6, so that

N rel2 g -y
SN('E) — E—Nﬁfn d@nV(s Slu(eﬂ 9n+1)) . (36)
n=l1

c0s 6, cos B,.1q

The integration volume is the cube —7/2 < 8, < n/2, and Oy;1 = 6;. The same change
of variables can also be used if the even and odd levels are separated, so that even and odd
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potentials, as in (35), must be set into the integral, and the integration domain would be
0<8, <m/2

In order to extract the spectrum of A,, from the sequence of Sy, let us first determine two
auxiliary sequences

Al = S A= 8y-1/Sx - (37)
Following Euler’s arguments [7], one has
Ay <h<Af. (38)

Correspondingly, the value of A, is given by the intercept of the [ower and the higher sequences.

The simplest way is to set, in the N'th approximation,

Ay = Ay(AG — A+ AL AN — AjyD
(AN — AR+ Ay — Ayl

.- - 39

Convergence of the method may be improved by subtracting the sum of higher-excited
levels from Sy, as proposed in Section 4. As soon as Ag is evaluated, the next eigenvalue X ;
may be treated in the same way, provided that the accuracy in the calculated Sy is sufficient.

6.2. Modified Pdschi-Teller potential

The potential function and its Fourier transformation are

wk

V(x) = cosh™ Vi) = —— .
Gy=c * ® = e (37K}

- (40)

The Schridinger equation has an analytical solution [9], and the semi-classical spectrum has
also a simple form (see (Al4)),

= WE+mWE+n+D) A= (VE+n+i). (41)
By means of the decomposition in partial fractions of
o0 =
Sn(e) = Y (Ve +m(ve+n+DIY (42)
r=0

one can express the trace invariants in terms of Riemann'’s zeta functions, e.g.
Si=1//¢ $2= (2, /8) =251+ 42, VE+ )
Ss =¢(3,4/8) =38 — (3, /e + 1) etc. ' 43)

The trace invarjants for the even and odd energy levels can be also expressed in terms of the
zeta-functions, which are reduced to the Bernoulli numbers for /2 = 0,1,2,.... In the
sermni-classical approximation one has

Sy =¢(2N, Ve +1).

The appearance of the zeta-function is typical for the semi-classical approximation in general,
because of the quantization rule (A13).
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801/2

Figure 2. Relative errors in coupling constants as functions of the ground state energy (even state)
for various orders of approximation, equation (37). Example of the Yukawa potential (28).

6.3. Square-well potential

The potential function is V(x) = 1 for |x| < 1 and 0 for |x|] > 1. The momentum
representation is given by
. ink ‘
V) = 228 : : )
Tk
The integrals for the trace invariants can be calculated analytically; for example,
S) =1/+/2 Sy =(e™*F — 14 4.5)/82. (45)

The exact spectrum is given by solution of two transcedental equations (for even levels and
odd Tevels, respectively), while the semi-classical result (cf (A16)) is

A = g (20 4+ 1)27%/16. (46)

In the semi-classical approximation, the trace invariants can be expressed in terms of the
zeta-functions. '

0.4. Accuracy of the approach

The accuracy of the method has been analysed by comparison with the analytical results for a
number of potentials: the exponential well (section 3}, the square well, and the potential of (40).
The case of the Gaussian well, V (x) = exp(—x?), has been also considered and compared
with the numerical calculation using the differential form of the Schrédinger equation.

If no analytical calculation of the integral is possible, the Monte Carlo method can be
applied. Typically, 10° interations are sufficient to achieve an error of less than 0.1% for
N < 5, go that a 286 AT computer may be employed. The integrand for .S';.' is smoother than
that for 5}, and one needs less iterations for even levels. The computation may be improved
for odd levels, if one makes use of the weighted Monte Carlo method [10] with the relation
function []((4/7) sin? 8,). It is suitable owing to a factor [ 2, which appears in the integrals
at small &y, since V= (£, . k,) is vanishing as k1 k» at ky 5 — O.

The typical results and convergence of the method are illustrated in figures 2 and 3.
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Figure 3. The same as in Figure 2, but for the first excited level (odd state). The broken curve
shows the error of the semi-classical approximation.

7. Conclusion

Starting from the integral form of the Schridinger equation and calculating the trace invariants,
one can evaluate the lower part of the energy spectrum with a reasonable accuracy. As shown in
several examples of one-dimensional potentials, this method can compete with other numerical
methods employed in solving the Schr8dinger equation. The approach would acquire an
additional significance if it can be applied to essentially multi-dimensional problems, where
one has to work with partial differential eqations, which makes the task much more difficult.
Future investigations will show whether the method presented here will be helpful for that
purpose. _
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Appendix

Al Semi-classical approximation

Al.l. Semi-classical generating function. We shall get a semi-classical approximation for the
generating function defined in (19),

g(e, ) =ATe(V(H +) 1= Afd‘xV(x)Fs(x, x) (Al

where F (x, x') is the coordinate kernel of the resolvent operator G}f‘ = (FI +&)7F. The latter
function is the Laplace transform of the evolution kernel, which is given by the Feynman path
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integral. In the present approach, the path integral is evaluated on solutions of the classical
equations of motion, and the resolvent is given as a sum of contributions from the classical
phase-space trajectories on the egergy shell, p? = AV(g) + &, connecting the points with
coordinates x and x’ (discussion and references may be found in reviews [11, 12]). The sum
over the classical trajectories is

2

- 1 !
FEC (xvx ) (gnlﬁ)(v_f,l)/z

1
Z B (x, x" exp — {W;m} (x,x") — Eymfm‘:| ) (A2}
{In this section, 7 is written down explicitly.) The result is expressed in terms of the truncated
action integral along the classical trajectories C,, = {g(2), p(£)}, with a fixed energy £ and the
boundary conditions ¢(0) = x, g(z) = X/,

W (x, 1) = fc E () dag; (1) (A3)
m j=1 i
which is a solution of two reciprocal Jacobi equations,
(@W/3x;)* — AV (x) = —e = BW/3x])> — LV (). (Ad)
The pre-exponential factor is given in terms of the second derivatives of W, namely.
22w, 1/2
B(x,x") = (— 8.928 det M) (A5)

where M is a matrix with the following elements, and

(A6)

2w, 72w\ 2W, 2w,
My =

ax;ds 8,88 - ax;8x)

Finally, ., are integers which are given by the behaviour of the trajectory near its turning points
in the coordinate space. The integral in (Al) is determined by closed classical trajectories
having a given energy —&, with x = x'. ‘ )

In the one-dimensional case. one can get an explicit result for the generating function. All
finite trajectories are closed, and each of them is specified by the energy and the number of
revolutions /. The momentum in (A3) depends on the energy and the running coordinate g,

p{g) = -/AV(g) — &, but not on x and x’. Respectively,
xJ -
Wi (x, x') = f p(g)dg + 2mw B (x, x") = [4p(x) p(x)] V2 (AT)
X

so that for x = x' the Jacobi action is independent of x and proportional to the number of
revolutions, as well as y,,, which equals the number of turns on the paths. The result is

X2
W = 2mw Y =2m w(A, &) = f dg/AV(g) —e (AB)
X1
where x1 and xp are the classical turning points, V{x;2) = &/A. The integral in (Al) is
calculated with B.(x, x), given in (A7), producing a factor independent of m,
2 14 8
RAC) 2 w

(A9
-\/W(q) )
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Now the series in m can be summed up using

= 2imz . w
1+2Ze =icotz z=-h——

m=1

| A

(A10)

where the series is made convergent by appending a vanishing positive imaginary part to z,
which stems from the analytical continuation in &, inherent to the resolvent operator. The
factor of 2 is due to the fact that for m # 0 each trajectory appears twice, corresponding to the
left and right revolutions in the potential well.

We have ultimately

A ow w
g0, ) = TR (A11)

The spectrum is given by poles of this function, w, = (# + %)hn, in agreement with the
Bohr—Sommerfeld quantization rule.

Al.2. Quantization rule. Practically, one has to evaluate a function of one variable, § = ./g/2,

2 (= 2w
v(§) = — dg/V 2l =
®== @ 1=
and to evaluate the inverse function, v = v(§) ~ & = f(v). The semi-classical spectrum is
obtained if we set

(A12)

=z
&
(The accuracy of this method can be improved [13] for singular potentials and small £ if we
replace {2r + 1) by (2n + ), with an appropriate constant ¥, which is determined by the
potential behaviour near its singularity and at large x. We shall not get into the details now.)

We shall assume, for simplicity, that V(x) = V{—x) 2 0,and V({0) = max V(x) = [, so
v(£) is defined for 0 < £ < 1, and v(1} = 0. One has, for instance,

Al(e) = £ = f(@n+ Dr/JE) . (A13)

V{x) =cosh™2x = Eu(E) =2(1—§) ‘ (AlD)
V@=ep-lz) 5 66 = /T—F+Earcsing) — 45 (AL3)
Vix)y=1 for[x| <1 Vix})=0 forjx|>1 = Ev(&) =% 1—£2
(AL6)
Vix)=1-x> forfx] <1 Vx)=0 for|x|>1 = Eu(E)=1-—§2
(A17)

Vixy)=1—x% for|x| <1 V(x)=0 for|x|>1
= Eu(E) = c(l — E)!/*H/
(A18)
where o > 0 and

_ 4r'(e™")
T erosETEe




Energy spectrum from integral equation 7161
For higher excited levels. large v and, respectively, small £ are essential, which simplifies
evaluation of the integral and getting the spectrum. In order to investigate the behaviour of

v(§) at & <« 1, it is suitable to use the following representation, obtained by differentiation
and a change of variables: ’

, 4 = 3 g [
—[v(&)+§v(§>1=;fo mdw;[}o 0:(6)d8  (AL9)

where sinfp = £, and g is substituted for & by

_# _ Y@
Vigl= St o pe(8) = Vi (A20)

One can see, in particular, that £v(£) is regular at £ = 0, and limg_0 ¢z (8) = ¢p(H) exists, if
V (g) has an exponential asymptatics. Thus we have the expansion

) _
§vE) =—(w—u)+ 0% (A21)
where
+o0 ) r/2
v = f V@D w=2 f eol6) 0. (A22)
4] [4]

If V(g) = O for g > gp, then v; = 0 and the expansion goes in powers of £2, cf (AIS)—{AIS).

A2, Trace invariants for the Yukawa-type potential

For the one-dimensional Yukawa-type potential (28), the trace invariants are expressed by
series of powers of zeros of the Bessel functions and their derivatives, namely

SHE) = QN Y ™ Sy = @™ Y )™
m=1 m=l (A23)
Sn(2) = SH(e) + Sy(e)

where ¢ = (v/2)°. The integrals in (30) can be calcula;ced analyticafly, and the results are
given below:

14+« 1
2ot 2o— _ 2¢ _ 21 ] ‘ ‘
WS sy PSS T TR ST (A24)
2+ A + &2 _ 1 1+«
f ot __ 4 = 4 = -
B = S T 2P E 1) W = e S A R P
(A23)
6ot 64 19k + 1642 4 2«3
B = e T 2P+ OB+ 20
(A26)
1 : 24«
6S_ = N 6S =
e B = B+ 20 + 1)

(1 + 263 (1 +1)(3 -+ 2)
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48 + 248k + 472« + 400k + 139¢* + 10«°

LLSS+ — -
4 841 + 26)*(1 + k)2(3 +26)(2 + &)
111410
usy = e (az7)
81+ 2 (1 +x)2 3+ 2002+ k)

8¢ 12 + 56k + 90k® + 55¢° + 10¢*
K4 = e 0 + 200 (L + )23 + 26)

g _ 240+ 1456 + 341412 4 3903k + 2222¢* + 5505 + 28«®
Hoos = 85 (1 + 260070 1 K203 + 26) (2 + ) (5 + 26)
05 19 + 14« a2%)

57 81+ 20501 + 00203 + 2002 + 1) (5+ 2¢)

48 + 272k + 574 + 5513 + 224* + 28«°
Bic®(1+ 26)°(1 + €)*(3 + 26)(2 + &)

108 =

where ¢ = /g/u = v/2. Fork = %, one has Ji2(¢) = /Z/7L sin¢, and the Sy are
proportional to the Bernoulli numbers,

GN =1

2
W SF/16) = T (<1 By (A29)

It is notable that the form of the denominators can be obtained directly from a Landau-type
analysis of singularities of the integrals in (30), which are like the Peynman integrals for a
one-dimensional field theory. The analytical calculation of the integrals can be performed
recursively by means of one of the existing computer systems. The series of inverse powers
of roots of the Bessel functions, Sy, are known for any v also from the infinite product
representation [14].
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