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Quantum energy spectrum from the integral Schrtidinger 
equation 

Yochai Ben-Horin and M S Marinov 
Department of Physics, Technion-Israel Institute of Technology. Haifa 32000, Israel 

Received 18 May 1993 

Abstract. The integraJ form of the Schrodinger equation for bound-state levels, considered by 
Schwinger, is used for evaluation of the energy spec” .  The method is based upon calculation 
ofthe series for powers ofeigenvalues of the coupling constant, as given by multiple integrals of 
products of the potentM and free Green functions. Some qualitative propenies of the solutions 
can be easily proved in a general w3y The integrals are appropriate, in particular, for calculation 
by means of the Monte Carlo method. The semiclassical approximation is derived for the one- 
dimensional case. A number of examples show the effectiveness of the method. 

1. Introduction 

We shall consider the quantum mechanical bound-state problem for a finiterange potential 
well. The Hamiltonian is of the form I?*= fi0 - A?, where & = -A is the kinetic energy 
operator, the potential energy operator V is given by a (properly normalized) function V ( x )  
describing the well, and A is a potential strength coefficient (the coupling constant). For a 
bound-state wavefunction Y&), square-integrable in the s-dimensional Euclidean.space, the 
Schrodinger equation, (fi + &)Qe = 0, can be transformed to an integral form, which is a 
homogeneous second-kind Fredholm equation 

where eS = (& + E ) - ‘  is’ the free-motion Green function. It is assumed that the potential is 
localized to a finite region in space, i.e. lim V ( x )  = 0 as 1x1 + CO. For any positive value 
of E ,  the eigenvalues of the integral operator in the RHS of (I)  describe a set of self-similar 
potentials, having a bound state with the energy E .  As is clear from the physical arguments, the 
spectrum ofthe coupling constants, for any given binding energy E > 0, is infiniteand bounded 
from below by the lowest eigenvalue A&), corresponding to a minimum coupling constant, at 
which the potential has its ground stateat E .  Thespectrum ofthecoupling constants is discrete, 
unlike the energy spectrum. (A typical example is shown in figure 1. For any A z 0, there is 
a finite number of bound levels with E 2 0, and a continuous spectrum at E < 0. Any fixed 
E > 0 corresponds to an infinite number of the eigenvalues A. (E ) ,  three of which are presented 
in the figure.) The value of the ground-state energy EO is one of the most important features of 
any quantum mechanical problem, and it is the A-dependence of EO that can be calculated as a 
function inverse to A&). 

The integral representation of the Schrodinger equation was used by Schwinger [l] in order 
to prove a number of general properties of the energy spectrum. The purpose of this work is 
to show that (1) can be also used for a numerical calculation of the lower state energies. It is 
found that the method is quite practical in some respects, and sometimes has certain advantages 
as compared with more traditional methods based upon the differential equation. 
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A 

Figure 1. Lower bound levels for potential A/cosh2x, equation (41). The broken curves show thc 
semi%lassical approximation. 

2. Trace invariants 

2.1. Definition 

Let us consider a sequence of invariants for the integral operator in (l), which are the traces 
~~~ ~ ~~ 

~~ . of its powers, .~ 

If N is high enough, the first terms in the series are dominant, and one can get b, A , ,  . . , 
immediately and with reasonable accuracy, calculating the traces. (A discussion is given in 
section 6.) 

Under proper assumptions on the form of the potential, the traces exist and the series are 
convergent, at least for sufficiently large N .  In order to evaluate each trace, one has to calculate 
a multiple integral, in coordinate or momentum representation: 

= \ . . jd 'kl  ... drkNGe(kl)?(kl - k * ) G : e ( k z ) . . . G ~ ( k " ) ~ ( k ~  - k j )  (3) 

where d"x and c?Lk are the volume elements in the (s-dimensional) coordinate and momentum 
spaces; Gs and V are the Fourier transforms of G, and V ,  respectively: 

&,(k) = (k2 + E)-' G,(x) = (2n)-" d"keik"6,(k) (4) s 
p ( k )  = (2n)-' / d'xe-"'V(x). (5) 



, 
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The integrals can be represented by means of the following recursive procedure, which 
resembles that in constructing the perturbative series for the Green function: 

K ; V ( k i , k z ; E ) = / K N - i ( k i , k ; E ) -  k2 d’k + E ?(k-kz) (7) 

(8) 

Now theproblem is tocompute themultiple integrals, yetthere aresomegeneral arguments 

Kl(ki, kz; E )  E V(kl - k z ) .  

Here K N  is the kernel for the Hermitean operator kN = ?(es !?)N-i. 

to be considered before appealing to numerical methods. 

2.2. Symmetries 

If the potential has a symmetry, one can reduce the integration appropriately, separating states 
having different symmetry properties. Namely, let r be a space symmetry group preserving 
the form of the potential, G,(yx) = G,(x), V ( y x )  = V ( x ) ,  where y E r is a space 
transformation. As is well kriown [2] the eigenstates are distributed in classes corresponding 
to irreducible unitary representations of r. The Green function can be written as a sum over 
all unitary irreducible group representations, 

& = 6fFp 
P 

where pp is a projection to a given unitary irreducible representation acting in the space 
of functions on the group orbit in RS, and the partial Green operator acts in the co-set 
space M = RS/ r and is obtained by %cans of an appropriate averaging over the group r. In 
the coordinate representation, where V is diagonal, the decomposition Of (9) is appropriate. 
A similar decomposition should be applied to the potential operator V ,  if one prefers the 
momentum representation, where G, is diagonal. 

Setting the decomposition into’(2), we get. 

where only the levels corresponding to a given unitary group representation p contribute to 
the partial trace function S i ,  which is given by a reduced integral, 

S$(E)  = ~ . i d p ( r i ) . . . d p ( r ~ ) V O ~ ) G ~ ( r i , r ? ) V ( r z ) . . .  V(rN)Gf ( rN, rd  

= i . . i d p ( k i ) .  . .d/*(k”.)ee(ki)?p(kl. kz)c,(kz) .. . c?;,(kN)?IP(kN, krj 

(11) 

and the integrals are calculated in the co-set space M with an appropriate measure dp. 
Let us consider two simple examples: 
(i) Symmetry under reflection: V ( x )  = V ( - x ) ,  r, = ZZ. and M is a half-space. The group 

has 2 irreducible representations, p = z!r, 

G&l -xz) =G:(xl,Xz)+G;(XI,x2) (12) 
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where 
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G:(xi,Xz) = f[Gz(Xi - X Z )  * G,(xI + ~ z ) l  *G~(x I ,  - ~ d .  (13) 

Similarly, one can define ?*(kl ,kz)  and set it into (11). The levels having even and odd 
wavefunctions contribute separately to ,$(E) and S;(E). 

(ii) Rorationnl symmetry in R3 : V ( r )  = V(r ) ,  r = lzl, and r = SO(3). Each unitary 
representation is given by an (integer) angular momentum 1,  and 

+I 

GiCrl, r2) = / G& - zzPdz)  dz (14) 
-1 

where ( 2 1  .r~) = rlrzz, and &(z) is the Legendre polynomial. The result, given in [3], is a 
productofmodifiedBesselfunctions oftheargumente'/zr. Similarly, onecandefine Vi&,, kz)  
and set it into (1 1). Another way of dealing with the problem with spherical symmetry is to 
consider the Schrodinger equation for the radial wavefunction, with the centrifugal potential 
I(l + I)/? added to AV, where the boundary condition at r = 0 is fixed by using G; instead 
of GE. Of course, the method can be extended easily to R' with r = SO@). 

Using the above arguments to separate levels having different symmetry properties, one 
gets series and integrals having a better convergence. 

3. Small binding energies 

The limit of E --f 0 is of particular interest, since it enables one to get the threshold values of 
the coupling constant at which binding takes place. The one- and two-dimensional problems 
are special, because they have bound states for any attracting potential, even for a vanishing 
coupling [4]. This is evident from (3), since the integral is divergent for E = 0. 

(i) One-dimensional problem At small E the domain of small k is the reason of the 
divergence in the integral, which can be evaluated approximately: 

SN(E) = [?(O) 1 6;,(k)dk + O ( l ) l N .  (15) 

The first term in the series (2) is dominant, as it goes to infinity, and one gets the well known 
result 

L J-m 

(ii) Two-dimensional problem. The traces have a logarithmic divergence at small k ,  but 
an argument like that given above cannot be applied immediately, since the integral of 6, 
would also be diverging at large k .  Actually, the integral exists because of a decrease in at 
some values of kZ, large as compared with E, owing to a finite potential range. Introducing the 
cut-off phenomenologically, one gets 

where D is a compact domain where the potential is essentially non-zero, a(D) is its area, 
and C is a A-independent dimensionless constant, which depends on the shape of D. For 
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two-dimensional potentials having the central symmetry, this result was given by Landau and 
Lifshitz [4], with C = 2x. . 

(iii) Three-dimensionalproblem The integral is converging now, and the first bound state 
appears at a finite value of the coupling constant h ~ .  Calculating &(O) one can evaluate ho 
and derive some bounds on the spectrum [I, 51. It is noteworthy that ho is not analytical near 
E = 0, as one can see from the integrals. Applying the operator &d/& to S, and setting 
E = 0, one has 

and the constants d, determine the behaviour of the coupling constants near E = 0, namely 
A(E)  = h,(0)(1 +d,,&. 

4. Higher-excited levels 

The semi-classical quantization rule enables one to improve the effectiveness of the method 
based upon calculation of the traces. Actually, evaluating a few lower eizenvalues h, from a 
number of SN, one has to neglect the remainder of the infinite series in (2). On the other hand, 
the semi-classical approach is adequate just for higher eigenvalues, i.e. for excited energy 
levels, so the remainders can be evaluated properly. Setting the semi-classical approximation 
for n >> 1, one can sum up the infinite series for &(E), except for a finite number.of the first 
terms, where the approximation is not accurate enough. 

Let us consider a generating function for the trace invariants, 

This functionlcan be expressed in terms of the Green function for the total Hamiltonian, 

g(E, h) = hTr[p(fi + E ) - 1 ] .  (20) 

As shown in appendix Al, the semi-classical approximation in the one-dimensional case 
enables one to get a closed expression for this function (All) summing up the contributions 
to the Green function from the classical trajectories 

where w(h, E )  is given in terms of the action integral (A8). 

integrals of the generating function, 
We shall introduce truncated trace invariants and represent them in terms of contour 

The contour C, in the complex A plane comes from +cc above the real axis, crosses the axis 
between h,-l and A,, and leaves for foo below the axis. If U is large enough, one can use the 
semi-classical approximation in the integral. Changing the variable, h + w, we get 

dw[f(2w/n&)lZN tan w 
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where f is defined after (A12) as a function inverse to u ( f ) ,  and the contour crosses the 
axis between n ( u  - i) and n(u + $). Let us deform the contour and make it parallel to the 
imaginary axis and cross the axis at w = x u ,  so that in thecomplex plane w = n v  + iy and 
tan w = i tanh y .  Performing the analytical continuation in w and setting 

Y Ben-Horin and M SMarinov 

we introduce two real functions, p,(y) = p,(-y) and fpv(y) 
on E. The result is a rapidly converging real integral, 

-qv(-y), which also depend 

1 -  
$ ) ( E )  = - d ~ [ p , ( y ) l ~ ~  sin[2NvU(y)l  tanhy. (25)  

As soon as SN and S$’ are calculated to a reasonable accuracy, we get a finite set of 

*EN 1 
equations for lower h,, 

”-1 Eh;” = SN - S$) N = N I , .  . . , N I  + U .  (26) 

If we start from N I  =~ 1, the problem is to solve an order-v algebraic equation with coefficients 
obtained from (26). Its roots are A;’, . . . , h;:’. 

“=a 

5. Yukawa-type potential 

The trace invariants can be calculated explicitly for the Yukawa-type potential, i.e. 

where f i  is a parameter, the inverse potential range. The corresponding potentials in the 
x-representations are 

V ( X )  = e-”Ix’ 
e-Plxl 

V ( x )  = 4zp- 
1x1 

fors = 1 

fors = 3. 

Now the integrals of (3) are like the integrals given by the Feynman diagrams (in the s- 
dimensional Euclidean field theory), which are regular polygons with all vertices connected 
to the centre: 

(we set kN+l = k l ) .  Using the standard method of field theory, and introducing auxiliary 
parameters, we can represent the integral in the exponential form: 
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where U = En=, an, ,3 = E,"=, 6". and the integration domain is {an z 0, pn z O}. 
Evaluating the Gaussian integrals in k,, one gets the determinant of the Jacobi tridiagonal 
matrix depending on the positive parameters or, and pn. 

Let us concentrate upon the one-dimensional case. The Schrodinger equation has an 
explicit solution in terms of the Bessel functions (see e.g. [6]) 

N 

Ye(x) = CJ&-e-"x'/2) (32) 

where C is a normalization constant, U = 2 f i / p ,  and < = M / p .  The spectrum is given 
by the boundary condition at x = 0 , 

2 

(33) 

(34) 

Here jv.mand jL,m (m = 1,2, .  ..)arerootsoftheBesselfunctionanditsderivative,respectively 
(we use Watson's notation [7]). 

EL .I 

4 
for even levels: ~ ' ( 0 )  = o ~ h2m-z(~) = -(I",,,)' 

W O )  = o  hZm-l(&) = -(O",m)2. for odd levels: 2 . 
4 

Separating the even and odd levels in the trace invariants S$(E), one has to set 

(35) EL V * ( k l ,  k2) = ; (Kkl - k2)2 + p21-1 f [ (kl  + k2Y + E L Y )  

instead of the second factor in integrals (30), restricting the integration region to positive k,. 
All the inte-gations can be performed analytically. The lowest trace invariants are given in 
appendix A2. The result is in agreement with the hown  summation formulae for series of 
roots of the Bessel hc t ions  (cf e.g. [SI). 

It isnoteworthythatthecalculationofSJ0) wasperformedin 1781 byEuler(asexp1ained 
by Watson [7]), and the result was used for evaluation of the smallest zeros of J&). 

Concluding this section, we note that any finite-range potential V ( x )  can be approximated 
reasonably with a finite superposition of the Yukawa-type potentials of different ranges p, if 
the Pad6 approximation is used for ?(k) .  In principle, the corresponding trace invariants can 
be calculated analytically. 

6. Computational results and examples 

6.1. General arguments 

The problem is to evaluate the trace invariants which are given by multiple integrals in (3). The 
quantities, which can be obtained analytically for the Yukawa-type potentials in section 5, must 
be calculated numericaUy in general, for instance, by means of the Monte Carlo method. A 
suitable fomoftheintegral in the one-dimensionalcaseis obtained by meansofthesubstitution 
k=&tano,sothat 

The integration volume is the cube -z/2 c 0, c z/2, and 0N+1 = 01. The same change 
of variables can also be used if the even and odd levels are separated, so that even and odd 
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potentials, as in (35). must be set into the integral, and the integration domain would be 

In order to extract the spectrum of A. from the sequence of SN, let us first determine two 

Y Ben-Horin and M S Marinov 

o < e, < x/z. 

auxiliary sequences 

- I / N  - Ah = SN 

Following Euier's arguments [7], one has 

N = S N - I I S N .  (37) 

~h < ho <A; .  (38) 

Correspondingly, the value of A0 is given by the intercept of the lower and the higher sequences. 
The simplest way is to set, in the Nth  approximation, 

Convergence of the method may be improved by subtracting the sum of higher-excited 
levels from S,V, as proposed in Section 4. As soon as A0 is evaluated, the next eigenvalue AI  
may be treated in the same way, provided that the accuracy in the cal+.ted SN is sufficient. 

6.2. Modifred Poschl-Teller potential 

The potential function and its Fourier transformation are 

xk 
2sinh ( i n k )  ' 

V ( X )  = cosh-*x ?(k )  = (40) 

The Schrodinger equation has an analytical solution [9], and the semi-classical spectrum has 
also a simple form (see (A14)), 

A" = (& +n)(&+n + 1) A; = (&+ n + 4)'. (41) 

By means of the decomposition in partial fractions of 

one can express the trace invariants in terms of Riemann's zeta functions, e.g. 
, ,  

SI = l f &  sz = C(2, &) - 2s1 + 5(2, & + 1) 

~3 =~5(3,&)-3s*-5(3,&+1) etc. (43) 

The trace invariants for the even and odd energy levels can be also expressed in terms of the 
zeta-functions, which are reduced to the Bernoulli numbers for 6 = 0, 1,2, . . . . In the 
semi-classical approximation one has 

S i  = <(ZN,&+ 1). 
The appearance of the zeta-function is typical for the semi-classical approximation in general, 
because of the quantization rule (A13). 
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Figure 2. Rclmsc enom in coupling consanis as funcuons of the ground smie cnergy (eben si=) 
for vviour ordcn of approumuion, cqmion (37). Eumple of th: Yukwa pordntiaI(28). 

6.3. Square-well porenrial 
The potential function is V(x) = 1 for 1x1 < 1 and 0 for ]xi > I .  The momentum 
representation is given by 

- sink 
V(k) = -. 

rrk (44) 

The integrals for the trace invariants can be calculated analytically; for example, 

SI = I/& S2 = (e-4fi - 1 + 4&)/8&’. (45) 
The exact spectrum is given by solution of two Wanscedental equations (for even levels and 
odd levels, respectively), while the semi-classical result (cf (A16)) is 

Ai’ = E + (2n + 1)2~2 /16 .  (46) 
In the semi-classical approximation, the trace invariants can be expressed in terms of the . 
zeta-functions. ~~ 

6.4. Accuracy of the approach 
The accuracy of the method has been analysed by comparison with the analytical results for a 
number of potentials: theexponential well (section 5), the square well, and the potential of (40). 
The case of the Gaussian well, V(x) = exp(-x2), has been also considered and compared 
with the numerical calculation using the differential form of the Schrainger equation. 

If no analytical calculation of the integral is possible, the Monte &lo method can be 
applied. Typically, lo5 interations are sufficient to achieve an error of less than 0.1% for 
N < 5, so that a 286 AT computer may be employed. The integrand for S$ is smoother than 
that for S;, and one needs less iterations for even levels. The computation may be improved 
for odd levels, if one makes use of the weighted Monte Carlo method [IO] with the relation 
function n((4/7r) sin’ On). It is suitable owing to afactor n k,”, which appears in the integrals 
at small k-, since c-(k, .  kz) is vanishing as klk2 at kj.2 + 0. 

The typical results and convergence of the method are illustrated in figures 2 and 3. 
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Figure 3. The same as in Figure 2, but for Ihe first excited level (odd state). The broken curve 
shows the error of the semi-classical approximation. 

7. Conclusion 

Starting from the integral form of the Schrodiigerequation and calculating the trace invariants, 
onecan evaluate thelowerpart of theenergy spectrum with areasonable accuracy. As shown in 
several examples of one-dimensional potentials, this method can compete with other numerical 
methods employed in solving the Schradinger equation. The approach would acquire an 
additional significance if it can be applied to essentially multi-dimensional problems, where 
one has to work with partial differential eqations, which makes the task much more difficult. 
Future investigations will show whether the method presented here will be helpful for that 
purpose. ~~ 
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Appendix 

A l .  Semi-classical approximation 
A1.1. Semi-classical generating function We shall get a semi-classical approximation for the 
generating function defined in (19). 

J 

where Fe@, x') is the coordinate kernel of theresolvent operator = (fit E ) - ' .  The latter 
function is the Laplace transform of the evolution kernel, which is given by the Feynman path 
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integral. In the present approach, the path integral is evaluated on solutions of the classical 
equations of motion, and the resolvent is given as a sum of contributions from the classical 
phase-space trajectories on the energy shell, p2  = hV(q) + E,  connecting the points with 
coordinates x and x' (discussion and references may be found in reviews [ 11, 121). The sum 
over the classical trajectories is 

(In this section, f i  is written down explicitly.) The result is expressed in terms of the truncated 
action integral along the classical trajectories C, = (q(t), p(t)}, with afixed energy E and the 
boundary conditions q(0) = x ,  q(t) = x', 

which is a solution of two reciprocal Jacobi equations, 

(a w/axj)2 - AV(X) = -E  = ( a  w/ax,!)2 - AV(X'). 

The pre-exponential factor is given in terms of the second derivatives of We, namely, 

(A4) 

where M is a matrix with the following elements, and 

Finally, ym are integers which are given by~the behaviour of the trajectory near its turning points 
in the coordinate space. The intesal in (Al) is determined by closed classical trajectories 
having a given energy - E ,  with n = x'. 

In the one-dimensional case, one can get an explicit result for the generating function. All 
finite trajectories are closed, and each of them is specified by the energy and the number of 
revolutions m. The momentum in (A3) depends on the energy and the running coordinate q ,  
p(q) = JAV(q) - E ,  but.not on x and X I .  Respectively, 

W,'"'(x, x') = p ( q )  dq + 2mw BAm)(x, x') = [4p(x)p(x')1-'/2 (A7) L2 
so that for x = x' the Jacobi action is independent of x and proportional to the number of 
revolutions, as well as ym. which equals the number of turns on the paths. The result is 

where XI and xz are the classical turning points, V(xl .2)  = &/A. The integral in (Al) is 
calculated with &(x, x ) ,  given in (A7), producing a factor independent of m, 
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Now the series in m can be summed up using 

where the series is made convergent by appending a vanishing positive imaginary part to z ,  
which stems from the analytical continuation in E,  inherent to the resolvent operator. The 
factor of 2 is due to the fact that form # 0 each trajectory appears twice, corresponding to the 
left and right revolutions in the potential well. 

We have ultimately 

cl h a w  
g (h,.?)=--mI-. h ah h 

The speckum is given by poles of this function, w, = (n + ;)En, in agreement with the 
Bohr-Sommedeld quantization rule. 

A1.2. Quantization rule. Practically, one has to evaluate a function of one variable, 6 = m, 

and to evaluate the inverse function, U = U(:) ct 6 = f(u).  The semi-classical spectrum is 
obtained if we set 

(A13 6” = f ((2, + l)h/&) . 
(The accuracy of this method can be improved [13] for singular potentials and small E if we 
replace (2n + 1) by (2n + y ) ,  with an appropriate constant y ,  which is determined by the 
potential behaviour near its singularity and at large x .  We shall not get into the details now.) 

We shall assume, for simplicity, that V ( x )  = V ( - x )  2 0, and V(0)  = max V ( x )  = 1, so 
U(<) is defined for 0 e 6 < 1, and u(1) = 0. One has, for instance, 

E CI A, ( E )  = - 6: 

V ( x )  = cosh-’x =+ $49 = 2(1 - 6) (-414) 

(~15) 
8 V ( x )  = e v - l x l )  =+ Q J ( ~ )  = ;(-+$arcsine) -46 

V ( x )  = 1 for 1x1 < 1 V ( x )  = 0 for 1x1 > 1 =+ f U ( f )  = 

~ ( x )  = 1 - x2 for 1x1 < 1 V ( X )  = o for 1x1 > 1 * tU(6) = 1 - t2 

IT 

(-417) 
V ( x )  = 1 - x u  for 1x1 e 1 V ( x )  = 0 for 1x1 > 1 

2 1/2+l/e =+ C U ( 0  = 4 1  - 6 ) 
(A18) 
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For higher excited levels. large U and, respectively, small 6 are essential, which simplifies 
evaluation of the integral and getting the spectrum. In order to investigate the behaviour of 
U(() at 5 << 1, it is suitable to use the following representation, obtained by differentiation 
and a change of variables: 

where sine0 = e, and q is substituted for 0 by 

One can see, in particular, that (U(() is regular at [ = 0, and limg,o ylG ( e )  
V ( q )  has an exponential asymptotics. Thus we have the expansion 

Po(@ exists, if 

4 
t u ( : )  = ;(U0 - U 1 0  + 0E2) (A21) 

where 

If V ( q )  

A2. Trace invariants for the Yukawa-type potential 

For the one-dimensional Yukawa-type potential (28), the trace invariants are expressed by 
series of powers of zeros of the Bessel functions and their derivatives, namely 

0 for q =- qo, then U ,  = 0 and the expansion goes in powers of $’, cf (A16)<A18). 

where E = (up/2)’. The integrals in (30) can be calculated analytically, and the results are 
given below: 

6 + 1 9 ~  + 1 6 ~ ’  + 2~~ 6 + -  , ’” - 2K3(i+2K)3(i+K)(3+2K) 
(A26) 
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48 f 2 4 8 ~  f 412~’ f 4@K3 f 1 3 9 ~ ~  f iOK5 
8K4(1 f 2K)4(i f K)’(3 +12K)(2 f K )  p8s‘ = 

. .  , .  
12 + 5 6 ~  f 9 o K 2  + 55K3 f i o K 4  
4 ~ ~ ( 1  + 2K)4(1 + K)’(3 + 2K) 

pas, = 

&IOS+ - 240 + 1456~ + 3414~’+ 3 9 0 3 ~ ~  + 2 2 2 2 ~ ~  + 5 5 0 ~ ~  + 2 8 ~ ~  
8 K 5 ( 1  + 2K)’(i + K)’(3 f k ) ( 2  f K ) ( 5  + k)  5 -  

48 4- 272K f 514~’ + 5 5 1 ~ ~  + 2 2 4 ~ ~  f 28K5 
8 K 5 ( 1  + 2K)5(i f K)’(3 f 2 K ) ( 2  f K )  

&loss = 

where K 

proportional to the Bernoulli numbers, 
f i / p  = 1112. For K = :, one has JI&) = m s i n g , ~ a n d  the Si are 

It is notable that the form of the denominators can be obtained directly from a Landau-type 
analysis of singularities of the integrals~in (30), which are like the Feynman integrals for a 
one-dimensional field theory. The analytical calculation of the integrals can be performed 
recursively by means of one of the existing computer systems. The series of inverse powers 
of roots of the Bessel functions, Si, are known for any v also from the infinite product 
representation [14]. 
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